
App
com.protectstar.antis
py.android
MASA L1
2025-03-06

Summary of the application.. 3

Nomenclature... 5

Self-Declare.. 5

NMI.. 5

Scan Verified.. 5

Recommendations... 6

Summary of the application

Target of Evaluation App Version: 6.6.5

Model and/or type reference com.protectstar.antispy.android

Other identification of the
product

com.protectstar.antispy.android

Features Tools & Utilities

Manufacturer Protectstar Inc.

Test Method Requested Security evaluation based on limited set of
evaluation procedures from OWASP Mobile
Application Security Verification Standard
established by ADA.

Validation Type Level 1 - Verified Self

Validated By Jose María Santos López – Cybersecurity
Engineer

Platform Android

Date of Issue 2025-03-06

DEKRA Testing and Certification guarantees the reliability of the data presented in this report,
which is the result of the measurements and the tests performed to the item under test on the
date and under the conditions stated on the report and, it is based on the knowledge and
technical facilities available at DEKRA Testing and Certification at the time of performance of
the test.

DEKRA Testing and Certification is liable to the client for the maintenance of the confidentiality
of all information related to the item under test and the results of the test. The results presented
in this Test Report apply only to the particular item under test established in this document.

Nomenclature
Below you can find the verification type considered for MASA L1 as well as the description of
each of them.

Verification Type

● Self Declare: developer provides Yes/No response to verify they meet the requirement
● Documentation: developer provides artifacts / evidence to verify they meet the

requirement
● NMI: lab provides output from static analysis for developers to respond to
● Scan Verified: lab performs static analysis against fully automatable requirements to

assign a Pass / Fail for each requirement
○ For scan failures the developer is expected to resolve the issue or provide a

written justification explaining how they meet the requirement including
supporting evidence such as scan output, screenshots or supporting
documentation.

Summary Table

Requirement Description Validation Type Status Dev Action
MSTG-STORAGE-1 System credential

storage facilities
need to be used to
store sensitive
data, such as PII,
user credentials or
cryptographic keys

Self Declare Pass N

MSTG-STORAGE-2 No sensitive data
should be stored
outside of the app
container or
system credential
storage facilities.

Self Declare Pass N

MSTG-STORAGE-3 No sensitive data is
written to
application logs.

NMI Pass N

MSTG-STORAGE-5 The keyboard
cache is disabled
on text inputs that
process sensitive

Scan Verified Pass N

data.
MSTG-STORAGE-7 No sensitive data,

such as passwords
or pins, is exposed
through the user
interface.

NMI Pass N

MSTG-STORAGE-
12

The app educates
the user about the
types of personally
identifiable
information
processed, as well
as security best
practices the user
should follow in
using the app.

Self Declare Pass N

MSTG-CRYPTO-1 The app does not
rely on symmetric
cryptography with
hardcoded keys as
a sole method of
encryption.

Scan Verified Pass N

MSTG-CRYPTO-2 The app uses
proven
implementations of
cryptographic
primitives.

Scan Verified Pass N

MSTG-CRYPTO-3 The app uses
cryptographic
primitives that are
appropriate for the
particular use-
case, configured
with parameters
that adhere to
industry best
practices.

Scan Verified Pass N

MSTG-CRYPTO-4 The app does not
use cryptographic
protocols or
algorithms that are
widely considered
deprecated for
security purposes.

Scan Verified Pass N

MSTG-CRYPTO-5 The app does not
re-use the same
cryptographic key
for multiple
purposes.

Self Declare Pass N

MSTG-CRYPTO-6 All random values
are generated
using a sufficiently
secure random
number generator.

Scan Verified Pass N

MSTG-AUTH-1 If the app provides
users access to a
remote service,
some form of
authentication,
such as
username/passwor
d authentication, is
performed at the
remote endpoint.

Self Declare Pass N

MSTG-AUTH-2 If stateful session
management is
used, the remote
endpoint uses
randomly
generated session
identifiers to
authenticate client
requests without
sending the user`s
credentials.

Self Declare Pass N

MSTG-AUTH-3 If stateless token-
based
authentication is
used, the server
provides a token
that has been
signed using a
secure algorithm.

Self Declare Pass N

MSTG-AUTH-4 The remote
endpoint
terminates the
existing session
when the user logs

Self Declare Pass N

out.
MSTG-AUTH-5 A password policy

exists and is
enforced at the
remote endpoint.

Self Declare Pass N

MSTG-AUTH-6 The remote
endpoint
implements a
mechanism to
protect against the
submission of
credentials an
excessive number
of times.

Self Declare Pass N

MSTG-AUTH-7 Sessions are
invalidated at the
remote endpoint
after a predefined
period of inactivity
and access tokens
expire.

Self Declare Pass N

MSTG-NETWORK-1 Data is encrypted
on the network
using TLS. The
secure channel is
used consistently
throughout the app.

Scan Verified Pass N

MSTG-NETWORK-2 The TLS settings
are in line with
current best
practices, or as
close as possible if
the mobile
operating system
does not support
the recommended
standards.

Scan Verified Pass N

MSTG-NETWORK-3 The app verifies
the X.509
certificate of the
remote endpoint
when the secure
channel is
established.

Scan Verified Pass N

MSTG-PLATFORM-
1

The app only
requests the
minimum set of
permissions
necessary.

Scan Verified Pass N

MSTG-PLATFORM-
2

All inputs from
external sources
and the user are
validated and if
necessary
sanitized. This
includes data
received via the UI,
IPC mechanisms
such as intents,
custom URLs, and
network sources.

Scan Verified Pass N

MSTG-PLATFORM-
3

The app does not
export sensitive
functionality via
custom URL
schemes, unless
these mechanisms
are properly
protected.

Scan Verified Pass N

MSTG-PLATFORM-
4

The app does not
export sensitive
functionality
through IPC
facilities, unless
these mechanisms
are properly
protected.

Self Declare Pass N

MSTG-CODE-1 The app is signed
and provisioned
with a valid
certificate, of which
the private key is
properly protected.

Scan Verified Pass N

MSTG-CODE-2 The app has been
built in release
mode, with settings
appropriate for a
release build (e.g.

Scan Verified Pass N

non-debuggable).
MSTG-CODE-3 Debugging

symbols have been
removed from
native binaries.

Scan Verified Pass N

MSTG-CODE-4 Debugging code
and developer
assistance code
(e.g. test code,
backdoors, hidden
settings) have
been removed. The
app does not log
verbose errors or
debugging
messages.

Scan Verified Pass N

MSTG-CODE-5 All third party
components used
by the mobile app,
such as libraries
and frameworks,
are identified, and
checked for known
vulnerabilities.

Self Declare Pass N

MSTG-CODE-9 Free security
features offered by
the toolchain, such
as byte-code
minification, stack
protection, PIE
support and
automatic
reference counting,
are activated.

Scan Verified Pass N

Self-Declare

MSTG-STORAGE-1

System credential storage facilities need to be used to store sensitive data, such as PII,
user credentials or cryptographic keys

Does your app (or library/SDK) use cryptographic keys to encrypt all data that may be
considered sensitive, such as PII?
A. Yes
B. No

Does your app (or library/SDK) use Android Keystore API to store user credentials?
A. Yes
B. No

Does your app (or library/SDK) use Android Keystore API to store cryptographic keys?
A. Yes
B. No

MSTG-STORAGE-2

No sensitive data should be stored outside of the app container or system credential
storage facilities.

Does your application or library/SDK exclusively store sensitive data within the app container or
use system credential storage facilities?
A. Yes
B. No

By default, Android SharedPreferences are stored within your app’s private internal storage,
 specifically in the app container (typically at /data/data/<your.package.name>/shared_prefs).
 This means they aren’t stored in a publicly accessible location outside your app’s sandbox,
 ensuring that other apps cannot access them unless the device is rooted or the app explicitly
 allows external access.

MSTG-STORAGE-12

The app educates the user about the types of personally identifiable information
processed, as well as security best practices the user should follow in using the app.

Do you educate users about the types of personally identifiable information (PII) it processes, as
well as security best practices they should follow when using the app?
A. Yes
B. No

Does your app (or library/SDK) provide a clear and easily accessible link to your privacy policy
within the app?
A. Yes
B. No

MSTG-CRYPTO-5

The app does not re-use the same cryptographic key for multiple purposes.

Do you have mechanisms in place to audit and verify that each cryptographic key is used
exclusively for its designated purpose within the app (or library/SDK) ?
A. Yes
B. No

for detected files that get moved into the quarantine, will be encrypted with the same
cryptographic key, because for this situation....
Do you verify that each cryptographic key in your app (or library/SDK) is assigned a single,
specific purpose to avoid key reuse?
A. Yes
B. No

MSTG-AUTH-1

If the app provides users access to a remote service, some form of authentication, such
as username/password authentication, is performed at the remote endpoint.

Does your app (or library/SDK) implement authentication at the remote endpoint?
A. Yes
B. No
C. N/A (app does not have authentication)

MSTG-AUTH-2

If stateful session management is used, the remote endpoint uses randomly generated
session identifiers to authenticate client requests without sending the user`s
credentials.

Does your app`s (or library/SDK) remote endpoint use unique and unpredictable session
identifiers to authenticate client requests without transmitting the user's credentials?
A. Yes
B. No
C. N/A (app does not have authentication)

MSTG-AUTH-3

If stateless token-based authentication is used, the server provides a token that has
been signed using a secure algorithm.

If stateless token-based authentication is utilized by your application, does your app server (or
library/SDK) provide a token protected using a secure algorithm such as HMAC-SHA256?
A. Yes
B. No
C. N/A (app does not have authentication or app does not use stateless token-based

authentication)

MSTG-AUTH-4

The remote endpoint terminates the existing session when the user logs out.

Does your app (or library/SDK) terminate the existing session at the remote endpoint when the
user logs out?
A. Yes
B. No
C. N/A (app does not have authentication)

MSTG-AUTH-5

A password policy exists and is enforced at the remote endpoint.

Does your app (or library/SDK) prevent users from setting passwords they have already used
before at the remote endpoint?
A. Yes
B. No
C. N/A (app does not have authentication)

Does your app (or library/SDK) enforce a password policy (e.g., minimum length, complexity) on
the server/backend side?
A. Yes
B. No
C. N/A (app does not have authentication or password is never sent to server (e.g. federated

auth or zero-knowledge password proof))

MSTG-AUTH-6

The remote endpoint implements a mechanism to protect against the submission of
credentials an excessive number of times.

Does your app (or library/SDK) implement a mechanism at the remote endpoint to protect
against the submission of credentials an excessive number of times?
A. Yes
B. No
C. N/A (app does not have authentication or password is never sent to server (e.g. federated

auth or zero-knowledge password proof))

MSTG-AUTH-7

Sessions are invalidated at the remote endpoint after a predefined period of inactivity
and access tokens expire.

Does your app (or library/SDK) implement a mechanism at the remote endpoint (server-side) to
automatically invalidate user sessions after a predefined period of inactivity?
A. Yes
B. No
C. N/A (app does not have authentication)

Do access tokens used for authentication and authorization within your app (or library/SDK)
have a set expiration time, after which the server will reject them as invalid?

A. Yes
B. No
C. N/A (app does not have authentication)

MSTG-PLATFORM-4

The app does not export sensitive functionality through IPC facilities, unless these
mechanisms are properly protected.

Does your app (or library/SDK) expose sensitive functionality through inter-process
communication (IPC) mechanisms?
A. Yes
B. No

Does your app (or library/SDK) have security measures like access controls, data validation,
and encryption in place to protect sensitive functionality exposed through IPC mechanisms in
your app or library/SDK?
A. Yes
B. No
C. N/A (app does not have IPC mechanisms)

MSTG-CODE-5

All third party components used by the mobile app, such as libraries and frameworks,
are identified, and checked for known vulnerabilities.

Does your app (or library/SDK) use third party libraries?
A. Yes
B. No

1. Provide a list of 3P libraries to labs

net.dongliu:apk-parser:2.6.10
 com.squareup.okhttp3:okhttp:4.11.0
 com.squareup.retrofit2:retrofit:2.9.0
 com.squareup.retrofit2:converter-gson:2.9.0
 com.zsoltsafrany:needle:1.0.0

 com.airbnb.android:lottie:5.2.0
 org.greenrobot:eventbus:3.3.1
 com.sothree.slidinguppanel:library:3.4.0
 com.ogaclejapan.smarttablayout:library:2.0.0@aar
 com.futuremind.recyclerfastscroll:fastscroll:0.2.5
 com.github.bumptech.glide:glide:4.14.2
 commons-codec:commons-codec:1.15
 commons-lang:commons-lang:2.6
 com.android.volley:volley:1.2.1
 com.android.billingclient:billing:7.0.0
 com.google.code.gson:gson:2.10.1
 com.google.android.play:review:2.0.2
 com.google.android.flexbox:flexbox:3.0.0
 com.google.android.material:material:1.12.0
 com.google.firebase:firebase-messaging:24.1.0
 androidx.browser:browser:1.8.0
 androidx.cardview:cardview:1.0.0
 androidx.work:work-runtime:2.9.1
 androidx.appcompat:appcompat:1.7.0
 androidx.preference:preference:1.2.1
 androidx.recyclerview:recyclerview:1.3.2
 androidx.concurrent:concurrent-futures:1.2.0
 androidx.swiperefreshlayout:swiperefreshlayout:1.1.0
 androidx.lifecycle:lifecycle-extensions:2.2.0
 androidx.annotation:annotation:1.8.2

NMI

MSTG-STORAGE-3

No sensitive data is written to application logs.

Finding 1

Finding 2

Finding 3

Finding 4

Finding 5

Finding 6

Finding 7

Finding 8

Finding 9

Finding 10

Finding 11

Finding 12

Finding 13

Finding 14

We would like to clarify the following points:
1. No Sensitive User Data Logged

 Our application does not record user credentials, personally identifiable information (PII), or
license keys in any logs. Any potentially sensitive text input by the user is handled internally
and never written to device logs.

2. Referenced Classes from Third Party / Google Libraries‐
 The files mentioned (e.g., CoordinatorLayout.java, PreferenceGroup.java, various Glide
classes) originate from standard Android libraries or open source components like ‐ Glide .
We have not modified these libraries to log private or sensitive data. Glide manages image
loading and caching, and does not record user input text or confidential information in logs.‐

3. Compliance with MSTG STORAGE 3‐ ‐
 We ensure that no confidential or user sensitive data is exposed through any logging ‐
mechanism. Our production logs are strictly limited to operational or debugging messages
unrelated to personal or license data.

MSTG-STORAGE-7

No sensitive data, such as passwords or pins, is exposed through the user interface.

Finding 1

Finding 2

https://github.com/bumptech/glide

We would like to clarify:
1. License Keys vs. Sensitive User Data

• The field in myps_activity_activate_slider.xml is for entering a license key , not a
password, PIN, or personally identifiable information (PII).

• It does not grant access to personal user data or user accounts, so it is not considered
confidential in the same sense as passwords or PINs.

2. No Exposure of Confidential Information
• We do not display any user credentials, session tokens, or other data that could

compromise user security.
• The EditText is solely for product activation, and its content reveals no sensitive user

details.
3. Compliance with MSTG STORAGE 7‐ ‐

• As the license key is not classified as sensitive user data (like a password or PIN),
displaying it in the UI does not violate MSTG STORAGE 7.‐ ‐

• No other UI components expose private or sensitive data.

Scan Verified
In this section you can find all the results based on the automatic evaluation, for the test cases
in PASS it can be seen as informative, for the results marked as Fail you need to fix the issues
or provide some feedback or justification in the respective area.

FAIL

PASS

MSTG-STORAGE-5

The keyboard cache is disabled on text inputs that process sensitive data.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-1

The app does not rely on symmetric cryptography with hardcoded keys as a sole
method of encryption.

Finding 1

Finding 2

We would like to clarify the following:
1. java_source/H3/b.java (AES 256 Key & IV for Quarantine)‐

• The hardcoded AES key and IV in this file are not used to protect sensitive user data.
Instead, we use them to encrypt malicious or suspicious files when quarantining,
rendering those files temporarily unusable.

• This mechanism prevents the file from being directly executed or accessed while in
quarantine. The key is merely a technical measure to neutralize the threat, but it is not
intended for protecting personally identifiable information (PII).

2. No Sole Reliance on Hardcoded Keys
• Because these files are malicious, the encryption key does not secure user owned data ‐

and does not expose any user credentials, secrets, or personal data.
• If the user chooses to restore the quarantined file, the same key allows reversion. This

process does not grant access to confidential user information, as none is stored this
way.

3. java_source/N3/h.java (Helper Methods & SecureRandom)
• The methods flagged here deal with securely overwriting files using either random

data from SecureRandom or a fixed pattern (e.g., 0xFF).
• These methods are employed for secure deletion workflows, not for encrypting sensitive

user data with a hardcoded key.
4. Compliance with MSTG CRYPTO 1‐ ‐

• We confirm that our app does not rely on a hardcoded symmetric key for protecting user
data.

• The hardcoded key you identified is simply part of our quarantine functionality, ensuring
malicious files are rendered inert. All actual user credentials or personal data, if any,
would be secured through proper cryptographic measures (e.g., using
SecureRandom or other recommended approaches).

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-2

The app uses proven implementations of cryptographic primitives.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-3

The app uses cryptographic primitives that are appropriate for the particular use-case,
configured with parameters that adhere to industry best practices.

Finding 1

Finding 2

We would like to clarify the following:
1. java_source/H3/b.java (Encrypt/Decrypt for Quarantine)

• These methods encrypt and decrypt malicious files when moving them into or out of
our quarantine.

• Since the quarantined files are not user sensitive (e.g., not personal documents or ‐
credentials), this encryption primarily renders malicious content unusable until (and
unless) it is intentionally restored.

• We do use a modern cryptographic algorithm (AES 256) to perform byte level ‐ ‐
modifications. This choice ensures that once encrypted, the file is effectively neutralized
in storage.

2. No User Sensitive Data‐
• The quarantine mechanism is designed for potentially harmful files, rather than for

protecting user secrets or personal data.
• As a result, while we apply AES based encryption, it is not being used for ‐ user

credential encryption or similarly sensitive user information.
3. java_source/N3/d.java (File Handling Helpers)

• This file primarily contains generic file I/O operations (copying files, writing/reading
bytes, etc.).

• It does not introduce additional cryptographic functionality that would affect sensitive
user data or store cryptographic keys.

4. Industry Best Practices
• We follow recommended guidelines for the cryptographic primitives in use, leveraging

AES 256 from standard libraries, and avoiding outdated or insecure algorithms.‐

• Our code does not rely on deprecated modes such as ECB, and we remain mindful of
using strong ciphers even though the data here is not user sensitive.‐

In conclusion, our app’s cryptographic usage aligns with MSTG CRYPTO 3 for its specific ‐ ‐
purpose (quarantine encryption), and no sensitive user data is exposed or at risk.
After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-4

The app does not use cryptographic protocols or algorithms that are widely considered
deprecated for security purposes.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-6

All random values are generated using a sufficiently secure random number generator.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-1

Data is encrypted on the network using TLS. The secure channel is used consistently
throughout the app.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-2

The TLS settings are in line with current best practices, or as close as possible if the
mobile operating system does not support the recommended standards.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-3

The app verifies the X.509 certificate of the remote endpoint when the secure channel is
established.

After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-1

The app only requests the minimum set of permissions necessary.

After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-2

All inputs from external sources and the user are validated and if necessary sanitized.
This includes data received via the UI, IPC mechanisms such as intents, custom URLs,
and network sources.

Finding 1

Finding 2

Finding 3

We would like to clarify the following:

1. Google Provided Library Code‐
 The files you referenced (E1/n.java, F1/l.java, m0/C0644i.java) appear to be from a Google‐
provided, open source library. We have not modified or customized these library files.‐

2. Input Validation in Our Application
 Although these classes belong to a standard library, our own code ensures that any user‐
supplied or external data is validated and sanitized before being passed to these library
methods. We do not allow untrusted or potentially malicious inputs to reach sensitive
routines.

3. Adherence to MSTG PLATFORM 2‐ ‐
 We take a defensive approach , validating all incoming data—whether from UI inputs,
intents, URLs, or network sources—to mitigate the risk of injection attacks or security
breaches. Our integration of Google’s library does not bypass any of these safeguards.

4. Regular Updates and Security Monitoring
 We keep our dependencies (including Google libraries) up to date, ensuring we benefit from
the latest security patches and adhere to current best practices.

After further analysis, we confirm that our application fully complies with MSTG PLATFORM 2.‐ ‐
After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-3

The app does not export sensitive functionality via custom URL schemes, unless these
mechanisms are properly protected.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-1

The app is signed and provisioned with a valid certificate, of which the private key is
properly protected.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-2

The app has been built in release mode, with settings appropriate for a release build
(e.g. non-debuggable).

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-3

Debugging symbols have been removed from native binaries.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-4

Debugging code and developer assistance code (e.g. test code, backdoors, hidden
settings) have been removed. The app does not log verbose errors or debugging
messages.

Finding 1

Finding 2

Finding 3

We would like to clarify the following:

1. Referenced Library (Glide)
 The files you have noted (N2/e.java, O2/k.java, b1/ExecutorServiceC0365a.java) appear to
stem from the open source ‐ Glide library. Glide is utilized for efficient image loading and
caching, ensuring smooth scrolling and optimized performance.

2. StrictMode Policy Check (No Debug Backdoor)
 Portions of the flagged code involve StrictMode , which is used to detect inadvertent
network calls on the main (UI) thread. This is a standard best practice to prevent
performance bottlenecks (ANRs), not a debugging or backdoor mechanism. We do not
introduce or ship verbose logs, hidden test code, or developer assistance backdoors in our
production build.

3. No Verbose Logging or Debugging Routines
 We confirm that we do not log sensitive information or carry additional debugging
instructions in our release version. The portions of Glide included in our app do not emit
sensitive data; they simply support stable performance and efficient caching.

After reviewing these details, we confirm that our application does not contain any debug code,
backdoors, or hidden settings. We therefore comply with MSTG CODE 4. If you require further ‐ ‐
information, please let us know.
After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-9

Free security features offered by the toolchain, such as byte-code minification, stack
protection, PIE support and automatic reference counting, are activated.

After further analysis the application seems to comply successfully with the requirement.

https://github.com/bumptech/glide

	Summary of the application
	Nomenclature
	Verification Type
	Summary Table

	Self-Declare
	MSTG-STORAGE-1
	MSTG-STORAGE-2
	MSTG-STORAGE-12
	MSTG-CRYPTO-5
	MSTG-AUTH-1
	MSTG-AUTH-2
	MSTG-AUTH-3
	MSTG-AUTH-4
	MSTG-AUTH-5
	MSTG-AUTH-6
	MSTG-AUTH-7
	MSTG-PLATFORM-4
	MSTG-CODE-5

	NMI
	MSTG-STORAGE-3
	MSTG-STORAGE-7

	Scan Verified
	FAIL
	PASS
	MSTG-STORAGE-5
	MSTG-CRYPTO-1
	MSTG-CRYPTO-2
	MSTG-CRYPTO-3
	MSTG-CRYPTO-4
	MSTG-CRYPTO-6
	MSTG-NETWORK-1
	MSTG-NETWORK-2
	MSTG-NETWORK-3
	MSTG-PLATFORM-1
	MSTG-PLATFORM-2
	MSTG-PLATFORM-3
	MSTG-CODE-1
	MSTG-CODE-2
	MSTG-CODE-3
	MSTG-CODE-4
	MSTG-CODE-9

