> DEKRA

App

com.protectstar.antis
py.android

MASA L1
2025-03-06

Summary of the appliCation............oo e
LA LoT 01T 4 e P T N

LS =Y § 0 .= o = T =

LS o= 1 T = 4 1 =

LYo 1014 11 8 Lo £= 1A T'o Y o L=

Summary of the application

Target of Evaluation

App Version: 6.6.5

Model and/or type reference

com.protectstar.antispy.android

Other identification of the
product

com.protectstar.antispy.android

Features

Tools & Utilities

Manufacturer

Protectstar Inc.

Test Method Requested

Security evaluation based on limited set of
evaluation procedures from OWASP Mobile
Application Security Verification Standard
established by ADA.

Validation Type

Level 1 - Verified Self

Validated By Jose Maria Santos Lopez — Cybersecurity
Engineer

Platform Android

Date of Issue 2025-03-06

DEKRA Testing and Certification.guarantees the reliability of the data presented in this report,
which is the result of the measurements and the tests performed to the item under test on the
date and under the conditions stated on the report and, it is based on the knowledge and

technical facilitiesgavailable at DEKRA Testing and Certification at the time of performance of
the test.

DEKRA Testing and Certification is liable to the client for the maintenance of the confidentiality
of all information related to the item under test and the results of the test. The results presented
in this Test Report apply only to the particular item under test established in this document.

Nomenclature

Below you can find the verification type considered for MASA L1 as well as the description of

each of them.

Verification Type

Self Declare: developer provides Yes/No response to verify they meet the requirement
Documentation: developer provides artifacts / evidence to verify they meet the

requirement

NMI: lab provides output from static analysis for developers to respond to

Scan Verified: lab performs static analysis against fully automatable requirements to
assign a Pass / Fail for each requirement
o For scan failures the developer is expected to resolve the issue or provide a
written justification explaining how they meet the requirement including
supporting evidence such as scan output, screenshots or supporting
documentation.

Summary Table

Requirement

Description

Validation Type

Status

Dev Action

MSTG-STORAGE-1

System credential
storage facilities
need to be used to
store sensitive
data, such as PII,
user credentials or
cryptographic keys

Self Declare

Pass

N

MSTG-STORAGE-2

No sensitive data
should be stored
outside of the app
container or
system credential
storage facilities.

Self Declare

Pass

MSTG-STORAGE-3

No sensitive data is
written to
application logs.

NMI

Pass

MSTG-STORAGE-5

The keyboard

cache is disabled
on text inputs that
process sensitive

Scan Verified

Pass

data.

MSTG-STORAGE-7

No sensitive data,
such as passwords
or pins, is exposed
through the user
interface.

NMI

Pass

MSTG-STORAGE-
12

The app educates
the user about the
types of personally
identifiable
information
processed, as well
as security best
practices the user
should follow in
using the app.

Self Declare

Pass

MSTG-CRYPTO-1

The app does not
rely on symmetric
cryptography with
hardcoded keys as
a sole method of
encryption.

Scan Verified

Pass

MSTG-CRYPTO-2

The app uses
proven
implementations of
cryptographic
primitives.

Scan Verified

Pass

MSTG-CRYPTO-3

The app uses
cryptographic
primitives that are
appropriate for the
particular use-
case, configured
with parameters
that adhere to
industry best
practices.

Scan Verified

Pass

MSTG-CRYPTO-4

The app does not
use cryptographic
protocols or
algorithms that are
widely considered
deprecated for
security purposes.

Scan Verified

Pass

MSTG-CRYPTO-5

The app does not
re-use the same
cryptographic key
for multiple
purposes.

Self Declare

Pass

MSTG-CRYPTO-6

All random values
are generated
using a sufficiently
secure random
number generator.

Scan Verified

Pass

MSTG-AUTH-1

If the app provides
users access to a
remote service,
some form of
authentication,
such as
username/passwor
d authentication, is
performed at the
remote endpoint.

Self Declare

Pass

MSTG-AUTH-2

If stateful session
management is
used, the remote
endpoint uses
randomly
generated session
identifiers to
authenticate client
requests without
sending the user's
credentials.

Self Declare

Pass

MSTG-AUTH-3

If stateless token-
based
authentication is
used, the server
provides a token
that has been
signed using a
secure algorithm.

Self Declare

Pass

MSTG-AUTH-4

The remote
endpoint
terminates the
existing session
when the user logs

Self Declare

Pass

out.

MSTG-AUTH-5

A password policy
exists and is
enforced at the
remote endpoint.

Self Declare

Pass

MSTG-AUTH-6

The remote
endpoint
implements a
mechanism to
protect against the
submission of
credentials an
excessive number
of times.

Self Declare

Pass

MSTG-AUTH-7

Sessions are
invalidated at the
remote endpoint
after a predefined
period of inactivity
and access tokens
expire.

Self Declare

Pass

MSTG-NETWORK-1

Data is encrypted
on the network
using TLS. The
secure channel is
used consistently

throughout the app.

Scan Verified

Pass

MSTG-NETWORK-2

The TLS settings
are in line with
current best
practices, or as
close as possible if
the mobile
operating system
does not support
the recommended
standards.

Scan Verified

Pass

MSTG-NETWORK-3

The app verifies
the X.509
certificate of the
remote endpoint
when the secure
channel is
established.

Scan Verified

Pass

MSTG-PLATFORM-
1

The app only
requests the
minimum set of
permissions
necessary.

Scan Verified

Pass

MSTG-PLATFORM-
2

All inputs from
external sources
and the user are
validated and if
necessary
sanitized. This
includes data
received via the Ul,
IPC mechanisms
such as intents,
custom URLs, and
network sources.

Scan Verified

Pass

MSTG-PLATFORM-
3

The app does not
export sensitive
functionality via
custom URL
schemes, unless
these mechanisms
are properly
protected.

Scan Verified

Pass

MSTG-PLATFORM-
4

The app does not
export sensitive
functionality
through IPC
facilities, unless
these mechanisms
are properly
protected.

Self Declare

Pass

MSTG-CODE-1

The app is signed
and provisioned
with a valid
certificate, of which
the private key is
properly protected.

Scan Verified

Pass

MSTG-CODE-2

The app has been
built in release
mode, with settings
appropriate for a
release build (e.g.

Scan Verified

Pass

non-debuggable).

MSTG-CODE-3 Debugging Scan Verified Pass N
symbols have been
removed from
native binaries.

MSTG-CODE-4 Debugging code Scan Verified Pass N
and developer
assistance code
(e.g. test code,
backdoors, hidden
settings) have
been removed. The
app does not log
verbose errors or
debugging
messages.

MSTG-CODE-5 All third party Self Declare Pass N
components used
by the mobile app,
such as libraries
and frameworks,
are identified, and
checked for known
vulnerabilities.

MSTG-CODE-9 Free security Scan Verified Pass N
features offered by
the toolchain, such
as byte-code
minification, stack
protection, PIE
support and
automatic
reference counting,
are activated.

Self-Declare

MSTG-STORAGE-1

System credential storage facilities need to be used to store sensitive data, such as PII,
user credentials or cryptographic keys

Does your app (or library/SDK) use cryptographic keys to encrypt all data that may be
considered sensitive, such as PII?

A. Yes

B. No

Does your app (or library/SDK) use Android Keystore API to store user credentials?
A. Yes
B. No

Does your app (or library/SDK) use Android Keystore API to store cryptographic keys?
A. Yes
B. No

MSTG-STORAGE-2

No sensitive data should be stored outside of the app container or system credential
storage facilities.

Does your application or library/SDK exclusively store sensitive data within the app container or
use system credential storage facilities?

A. Yes

B. No

By default, Android SharedPreferences are stored within your app’s private internal storage,
specifically in the app container (typically at /data/data/<your.package.name>/shared_prefs).
This means they aren’t stored in a publicly accessible location outside your app’s sandbox,
ensuring that other apps cannot access them unless the device is rooted or the app explicitly
allows external access.

MSTG-STORAGE-12

The app educates the user about the types of personally identifiable information
processed, as well as security best practices the user should follow in using the app.

Do you educate users about the types of personally identifiable information (PIl) it processes, as
well as security best practices they should follow when using the app?

A. Yes

B. No

Does your app (or library/SDK) provide a clear and easily accessible link to your privacy policy
within the app?

A. Yes

B. No

MSTG-CRYPTO-5

The app does not re-use the same cryptographic key for multiple purposes.

Do you have mechanisms in place to audit and verify that each cryptographic key is used
exclusively for its designated purpose within the app (or library/SDK) ?

A. Yes

B. No

for detected files that get moved into the quarantine, will be encrypted with the same
cryptographic key, because for this situation....

Do you verify that each cryptographic key in your app (or library/SDK) is assigned a single,
specific purpose to avoid key reuse?

A. Yes

B. No

MSTG-AUTH-1

If the app provides users access to a remote service, some form of authentication, such
as username/password authentication, is performed at the remote endpoint.

Does your app (or library/SDK) implement authentication at the remote endpoint?
A. Yes

B. No

C. N/A (app does not have authentication)

MSTG-AUTH-2

If stateful session management is used, the remote endpoint uses randomly generated
session identifiers to authenticate client requests without sending the user's
credentials.

Does your app’s (or library/SDK) remote endpoint use unique and unpredictable session
identifiers to authenticate client requests without transmitting the user's credentials?

A. Yes

B. No

C. N/A (app does not have authentication)

MSTG-AUTH-3

If stateless token-based authentication is used, the server provides a token that has
been signed using a secure algorithm.

If stateless token-based authentication is utilized by your application, does your app server (or

library/SDK) provide a token protected using a secure algorithm such as HMAC-SHA2567

A. Yes

B. No

C. N/A (app does not have authentication or app does not use stateless token-based
authentication)

MSTG-AUTH-4

The remote endpoint terminates the existing session when the user logs out.

Does your app (or library/SDK) terminate the existing session at the remote endpoint when the
user logs out?

A. Yes

B. No

C. N/A (app does not have authentication)

MSTG-AUTH-5

A password policy exists and is enforced at the remote endpoint.

Does your app (or library/SDK) prevent users from setting passwords they have already used
before at the remote endpoint?

A. Yes

B. No

C. N/A (app does not have authentication)

Does your app (or library/SDK) enforce a password policy (e.g., minimum length, complexity) on

the server/backend side?

A. Yes

B. No

C. N/A (app does not have authentication or password is never sent to server (e.g. federated
auth or zero-knowledge password proof))

MSTG-AUTH-6

The remote endpoint implements a mechanism to protect against the submission of
credentials an excessive number of times.

Does your app (or library/SDK) implement a mechanism at the remote endpoint to protect

against the submission of credentials an excessive number of times?

A. Yes

B. No

C. N/A (app does not have authentication or password is never sent to server (e.g. federated
auth or zero-knowledge password proof))

MSTG-AUTH-7

Sessions are invalidated at the remote endpoint after a predefined period of inactivity
and access tokens expire.

Does your app (or library/SDK) implement a mechanism at the remote endpoint (server-side) to
automatically invalidate user sessions after a predefined period of inactivity?

A. Yes

B. No

C. N/A (app does not have authentication)

Do access tokens used for authentication and authorization within your app (or library/SDK)
have a set expiration time, after which the server will reject them as invalid?

A. Yes
B. No
C. NJ/A (app does not have authentication)

MSTG-PLATFORM-4

The app does not export sensitive functionality through IPC facilities, unless these
mechanisms are properly protected.

Does your app (or library/SDK) expose sensitive functionality through inter-process
communication (IPC) mechanisms?

A. Yes

B. No

Does your app (or library/SDK) have security measures like access controls, data validation,
and encryption in place to protect sensitive functionality exposed through IPC mechanisms in
your app or library/SDK?

A. Yes

B. No

C. N/A (app does not have IPC mechanisms)

MSTG-CODE-5

All third party components used by the mobile app, such as libraries and frameworks,
are identified, and checked for known vulnerabilities.

Does your app (or library/SDK) use third party libraries?
A. Yes
B. No

1. Provide a list of 3P libraries to labs

net.dongliu:apk-parser:2.6.10
com.squareup.okhttp3:okhttp:4.11.0
com.squareup.retrofit2:retrofit:2.9.0
com.squareup.retrofit2:converter-gson:2.9.0
com.zsoltsafrany:needle:1.0.0

com.airbnb.android:lottie:5.2.0
org.greenrobot:eventbus:3.3.1
com.sothree.slidinguppanel:library:3.4.0
com.ogaclejapan.smarttablayout:library:2.0.0@aar
com.futuremind.recyclerfastscroll:fastscroll:0.2.5
com.github.bumptech.glide:glide:4.14.2
commons-codec:commons-codec:1.15
commons-lang:commons-lang:2.6
com.android.volley:volley:1.2.1
com.android.billingclient:billing:7.0.0
com.google.code.gson:gson:2.10.1
com.google.android.play:review:2.0.2
com.google.android.flexbox:flexbox:3.0.0
com.google.android.material:material:1.12.0
com.google.firebase:firebase-messaging:24.1.0
androidx.browser:browser:1.8.0
androidx.cardview:cardview:1.0.0
androidx.work:work-runtime:2.9.1
androidx.appcompat:appcompat:1.7.0
androidx.preference:preference:1.2.1
androidx.recyclerview:recyclerview:1.3.2
androidx.concurrent:concurrent-futures:1.2.0
androidx.swiperefreshlayout:swiperefreshlayout:1.1.0
androidx.lifecycle:lifecycle-extensions:2.2.0
androidx.annotation:annotation:1.8.2

NMI

MSTG-STORAGE-3

No sensitive data is written to application logs.

Finding 1

Finding 2

Finding 3

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

|188
189
190
191
102
193
194
195
196
197
198
199
200
201
202
203
204

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

[121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

try {
return Integer.valueOf(Integer.parselnt(o6));

} catch (NumberFormatException unused) {
Log.w("NotificationParams", "Couldn't parse value of " + s(str) +
return null;

¥

return null;

}

public JSONArray m(String str) {
String o6 = o(str);
if (!TextUtils.isEmpty(o06)) {
try {
return new JSOMArray(o6);
} catch (JSONException unused) {
Log.w("NotificationParams", "Malformed JSON for key " + s(str) + ":
return null;

}

return null;

}

public String n(Resources resources, String str, String str2) {
String[] strArr;
String o6 = o(str2);
if (!TextUtils.isEmpty(o6)) {
return o6;

1
String o7 = o(str2.concat(" loc_key"));
if (TextUtils.isEmpty(o7)) {
return null;
1

return null;
case 12:
case 13:
case 14:
case 15:
case 19:
default:
Log.e("GoogleApiAvalilability"”, "Unexpected error code
return null;
case 16:
Log.e("GoogleApiAvailability”, "One of the API components you attem
return null;
case 17:
Log.e("GoogleApiAvailability"”, "The specified account could not be
return e(context, "common_google play services sign in failed title
case 20:
Log.e("GoogleApiAvailability”, "The current user profile is restric
return e(context, "common google play services restricted profile t

+ 16);

}

public static String d(Context context, String str, String str2) {
Resources resources = context.getResources();
String e6 = e(context, str);
if (e == null) {
eb = resources.getString(R.string.common_google play services unknown i

}

return String.format(resources.getConfiguration().locale, e6, str2);
}
public static String e(Context context, String str) {

L.T ab;
Resources resources;

Finding 4

Finding 5

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

|195
196
107
198
199
200
201
202
203
204
205
206
207
208
209
210
211

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

[107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Y0.b
this
sync

by

this
this
this
this
this
dVar

}

public s
Log.

public s
if

1
thro

public f
long
i

} el

public f
int
long
bool
try

bVar = new Y0.b{();
.T3432g = bVar;
hronized (this) {
synchronized (bVar) {
bVar.f3345c = this;

}

.f3427b = new D(16);

.T3426a = new p5.g(7);

.T3429d = new b(executorServiceC0365a, executorServiceC0365a2, executor
.T3431f = new a(cVar2)

.f3430e = new v();

.f3673d = this;

tatic void d(String str, long j6, m mVar) {

v("Engine", str + " in " + rl.g.a(j6) + "ms, key: " + mVar);

tatic void g(s sVar) {
sVar instanceof n) {
((n) sVar).e();
return;

w new IllegalArgumentException("Cannot release anything but an EngineRe

inal d a(com.bumptech.glide.g gVar, Object obj, WO.f fVar, int i6, int
i6;

h) {

int i8 = rl.g.f11400b;

j6 = SystemClock.elapsedRealtimeNanos();

se {

inal boolean d(Object obj) {
i6 = rl.g.f11400b;
elapsedRealtimeNanos = SystemClock.elapsedRealtimeNanos();

ean z5 = false;

{

com.bumptech.glide.load.data.e h = this.f35331.f3362c.a().h{obj);
Object a6 = h.a();

Object d3 = this.f3533i.d(a6);

Ll1.h hVar = new L1.h(d3, a6, this.f3533i.f3367i);

We.f fVar = this.f3538n.f6461a;

g<?> gVar = this.f3533i;

e eVar = new e(fVar, gVar.f3372n);
InterfaceC0318a a7 = gVar.h.a();
al.b(eVar, hvar);
if (Log.isLoggable("SourceGenerator”, 2)) {
Log.v("SourceGenerator", "Finished encoding source to cache, key: "

}
if (a7.a(eVar) != null) {
this.f353%0 = eVar;
this.f35361 = new d(Collections.singletonlList(this.f3538n.f6461a),
this.f3538n.f6463c.b();
return true;

1
if (Log.isLoggable("SourceGenerator”, 3)) {

Log.d("SourceGenerator”, "Attempt to write: " + this.f353% + ", da
}

try {
this.f3534j.c(this.f3538n.f6461a, h.a(), this.f3538n.f6463c, this.f
return false;
} catch (Throwable th) {
th = th;
z5 = true;

Finding 6

Finding 7

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

|268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
[37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

} else {
z5 = false;

} catch (IOException | AssertionError unused) {
} catch (Throwable th) {
c6.disconnect();
TrafficStats.clearThreadStatsTag();
throw th;

}
if (z5) {
f6 = C0383c.T(c6);
} else {
C6383c.b(c6b, null, str, str2);
if (responseCode !'= 401 && responseCode !'= 404) {
if (responseCode '= 429) {
if (responseCode < 500 || responseCode >= 600) {
Log.e("Firebase-Installations", "Firebase Installat
C0382b.a a7 = c3.T.a();
a7.f6513c = f.b.BAD CONFIG;
6 = a7.a();

c6.disconnect();
TrafficStats.clearThreadStatsTag();
} else {
d.a aVar = d.a.BAD CONFIG;
throw new d("Firebase servers have received too many re

}

} else {
C0382b.a a8 = c3.T.a();
a8.f6513c = T.b.AUTH ERROR;
f6 = aB.a();

}

/* renamed from: k reason: collision with root package name */
public fipal long 3670k = 262144000;

/* renamed from: i reason: collision with root package name */
public final T f36681i = new T();

@Deprecated

public C0328¢(File file) {
this.f3669] = file;

}

@0verride // al.InterfaceC0318a
public fipnal File a(W@.f fVar) {
String b6 = this.f36681.b(fvVar);
if (Log.islLoggable("DiskLruCacheWrapper", 2)) {
Log.v("DiskLruCacheWrapper", "Get: Obtained: " + b6 + " for for Key: " -
}

try {
a.e 06 = c().o(bB);
if (06 == null) {
return null;

}
return o6.f3064a[0];
} catch (IOException e6) {
if ('Log.islLoggable("DiskLruCacheWrapper", 5)) {
return null;

Log.w("DiskLruCacheWrapper", "Unable to get from disk cache", e6);
return null;

Finding 8

Finding 9

6590
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

| 706
707
708
709
710

|711
712
713
714
715
716
717
718
719
720
721
722

184
185
186
187
188
189
190
191
192
103
194
195
196
197
198
199

|200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

return this.¥4867x;
}

@0verride // android.view.View
public int getSuggestedMinimumHeight() {

return Math.max(super.getSuggestedMinimumHeight(), getPaddingBottom() + ge
}

@0verride // android.view.View
public int getSuggestedMinimumWidth() {

return Math.max(super.getSuggestedMinimumWidth(), getPaddingRight() + getP:
}

public fipal int h(int i6) {
int[] iArr = this.f4860q;
it (diArr == null) {
Log.e("CoordinatorLayout", "No keylines defined for " + this + " - att:
return @;
} else if (i6 >= 0 && 16 < iArr.length) {
return iArr[i6];

} else {
Log.e("CoordinatorLayout”, "Keyline index " + i6 + " out of range for
return 0;

1

}

@0verride // P.InterfaceC03070
public fipal void i(View view, int i6) {
C0309q c0309q = this.f4851A;
if (16 == 1) {
c0309g.72634b = 0;
} else {
c0309q.f2633a

0;

if (string == null) {
cb = null;
} else {
cb = d3.75291c.c(string);
if (6 == null) {
d3.co(new IllegalStateException("Fragment no longer exi
throw null;

}

}
if {(c6 != null) {
while (arraylist2.size() <= parselnt) {
arrayList2.add(null);

1
c6.U(false);
arrayList2.set(parselnt, c6);
} else {
Log.w("FragmentStatePagerAdapt”, "Bad fragment at key ".con

}

@0verride // BO.a
public final Parcelable i() {
Bundle bundle;
ArrayList<ComponentCallbacksC0339j.f> arraylList = this.f5076f;
if (arraylList.size() > 0) {
bundle = new Bundle();
ComponentCallbacksC0339j.f[] fVarArr = new ComponentCallbacksC0339j.f[a
arraylList.toArray(fVarArr)
bundle.putParcelableArray("states”, fVarArr);
} else {

11| import java.util.Arraylist;

12 | import u.i;

13 /* loaded from: classes.dex */

14 | public abstract class PreferenceGroup extends Preference {

15
16 /* renamed from: H reason: collision with root package name */
17 public final ArrayList f5498H;
18
19 public PreferenceGroup(Context context, AttributeSet attributeSet, int i6) {
20 super(context, attributeSet, i6);
21 new i();
22 new Handler(Looper.getMainLooper());
23 this.f5498H = new ArrayList();
24 TypedArray obtainStyledAttributes = context.obtainStyledAttributes(attribute
25 obtainStyledAttributes.getBoolean(2, obtainStyledAttributes.getBoolean(2, tr
26 if (obtainStyledAttributes.hasValue(l) && obtainStyledAttributes.getInt(l, o
|27 Log.e("PreferenceGroup”, getClass().getSimpleName().concat(" should have
28 }
29 obtainStyledAttributes.recycle();
30 }
31
32 @0verride // androidx.preference.Preference
33 public final void f(boolean z5) {
34 super.f(z5);
35 int size = this.f5498H.size();
36 for (int i6 = 0@; i6 < size; 16++) {
37 Preference preference = (Preference) this.f5498H.get(i6);
38 if (preference.f5478u == z5) {
39 preference.f5470u = !25;
40 preference.f(preference.1());
41 preference.c();
42
43 }
Finding 10
146 if (d3 == null) {
147 deviceState = null;
148 } else {
149 deviceState = d3.getDeviceState();
150 }
151 if (deviceState == null) {
152 deviceState = new SidecarDeviceState();
153
154 u eb = jVar.e(sidecarWindowLayoutInfo, deviceState)
155 b bVar = this.f6065a.f605%;
156 if (bVar != null) {
157 bVar.af{activity, e6);
158 return;
159
160 return;
161
|162 Log.w("SidecarCompat”, "Unable to resolve activity from window token. M
163
164 }
165
166 /* loaded from: classes.dex */
167 public static final class a {
168 public static IBinder a(Activity activity) {
169 Window window;
170 WindowManager.LayoutParams attributes;
171 if (activity == null || (window = activity.getWindow()) == null || (att
172 return null;
173
174 return attributes.token;
175 }
176
177 public static SidecarInterface b(Context context) {
178 Ad.i.T(context, "context")

Finding 11

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

|72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Finding 12

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

[49
50
51
52
53
54
55
56
57
58
59
60
61
62

163
64
65

Finding 13

}

string = this.f6267a.getString("|S|id", null);

return string;

public final String b() {

PublicKey publicKey;
synchronized (this.f6267a) {
String str = null;
String string = this.f6267a.getString("|S||P|", null);
if (string == null) {
return null;
t

try {
publicKey = KeyFactory.getInstance("RSA").generatePublic(new X509Enc

} catch (IllegalArgumentException | NoSuchAlgorithmException | InvalidKe
Log.w("ContentValues", "Invalid key stored " + e6);
publickey = null;

H

if (publicKey == null) {
return null;

t

try {
byte[] digest = MessageDigest.getInstance("SHA1").digest(publicKey.g
digest[0] = (byte) (((digest[@] & 15) + 112) & 255)
str = Base64.encodeToString(digest, 0, 8, 11);
} catch (NoSuchAlgorithmException unused) {
Log.w("ContentValues", "Unexpected error, device missing required al

return str;

public final long f7999c;

public CBl12a(long j6, String str, String str2) {

this.f7997a = str;

this.f7998b = str2;

this.f7999c = j6;

}

public static String a(long j6, String str, String str2) {

try {

JSONObject jSONObject = new JSONObject();
jSONObject.put("token", str);
jSONObject.put("appVersion”, str2);
jSONObject.put("timestamp", j6);
return jSONObject.toString();

} catch (JSOMException eb6) {
Log.w("FirebaseMessaging”, "Failed to encode token: " + ef);
return null;

i

}

public static C0112a b(String str) {
if (TextUtils.isEmpty(str)) {
return null;

1
if (str.startswith("{")) {
try {
JSONObject jSONObject = new JSONObject(str);
return new C0112a(jSONObject.getlLong("timestamp"), jSONObject.ge
} catch (JSONException eb) {
Log.w("FirebaseMessaging”, "Failed to parse token: " + ef);
return null;

73 ' NetworkInfo networkinfo:

74 ConnectivityManager connectivityManager = (ConnectivityManager) this.f9509k
75 if (connectivityManager != null) {

76 networkInfo = connectivityManager.getActiveNetworkInfo();
71 } else {

78 networkInfo = null;

79 }

80 if (networkInfo != null && networkInfo.isConnected()) {

8l return true;

82

83 return false;

84 }

85

86 public final boolean b() {

87 try {

88 if (this.f9509k.a() == null) {

| 89 Log.e("FirebaseMessaging", "Token retrieval failed: null");

90 return false;

91 } else if (Log.islLoggable("FirebaseMessaging", 3)) {

92 Log.d("FirebaseMessaging”, "Token successfully retrieved”);
93 return true;

94 } else {

95 return true;

96 }

97 } catch (I0Exception eb) {

98 String message = e6.getMessage();

99 it (!"SERVICE NOT AVAILABLE".equals(message) && !"INTERNAL SERVER ERROR
100 if (e6.getMessage() == null) {

|101 Log.w("FirebaseMessaging”, "Token retrieval failed without exce

102 return false;

103 }

104 throw eb;
105 }

Finding 14

81 bundle.putString("osv", Integer.toString(Build.VERSION.SDK INT));
82 bundle.putString("app ver", this.f9600b.a());

83 bundle.putString("app ver name", this.f9600b.b());

84 K2.e eVar2 = this.f9599a;

85 eVar2.a();

86 try {

87 str3 = Baseb4.encodeToString(MessageDigest.getInstance("SHA-1").digest(
88 } catch (NoSuchAlgorithmException unused) {

89 str3 = "[HASH-ERROR]";

90 }

91 bundle.putString("firebase-app-name-hash", str3);

92 try {

93 String a6 = ((Z2.g) e2.l.a(this.f9604f.a())).a();

94 if (!TextUtils.isEmpty(a6)) {

95 bundle.putString("Goog-Firebase-Installations-Auth", a6);
96 } else {
| 97 Log.w("FirebaseMessaging”, "FIS auth token is empty");

98 }

99 } catch (InterruptedException eb) {

100 e = eb;

101 Log.e("FirebaseMessaging", "Failed to get FIS auth token", e);
102 bundle.putString("appid", (String) e2.l.a(this.f9604f.b()));
103 bundle.putString("cliv", "fcm-24.1.8");
104 gV¥ar = this.f9603e.get();
165 InterfaceC0582f interfaceC0582f = this.f9602d.get();
106 if (gVar != null) {
107 return;
108 }
109 return;
110 } catch (ExecutionException e7) {
111 e = el;

112 Log.e("FirebaseMessaging”, "Failed to get FIS auth token", e);

113 bundle.putString("appid", (5tring) e2.l.a(this.f96047.b()));

We would like to clarify the following points:
1. No Sensitive User Data Logged
Our application does not record user credentials, personally identifiable information (PII), or

license keys in any logs. Any potentially sensitive text input by the user is handled internally
and never written to device logs.

2. Referenced Classes from Third-Party / Google Libraries
The files mentioned (e.g., CoordinatorLayout.java, PreferenceGroup.java, various Glide
classes) originate from standard Android libraries or open-source components like Glide .
We have not modified these libraries to log private or sensitive data. Glide manages image
loading and caching, and does not record user-input text or confidential information in logs.
3. Compliance with MSTG-STORAGE-3
We ensure that no confidential or user-sensitive data is exposed through any logging

mechanism. Our production logs are strictly limited to operational or debugging messages
unrelated to personal or license data.

MSTG-STORAGE-7

No sensitive data, such as passwords or pins, is exposed through the user interface.

Finding 1
1 | <?7xml version="1.0" encoding="utf-8"7>
2 | <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orit
3 <Relativelayout android:orientation="vertical" android:background="@drawable/myp:
4 <View android:background="@drawable/myps slider indicator" android:layout wi¢
5 <TextView android:textSize="17sp" android:textColor="@color/colorTint" andro
6 </Relativelayout>
7 <include android:id="@+id/divider" layout="@Llayout/fragment border"/>
8 <LinearLayout android:orientation="vertical" android:background="@color/colorSli«
|9 <EditText android:textSize="14sp" android:textColor="@color/colorTint" andro:
10 <LinearLayout android:gravity="center" android:orientation="horizontal" andr(
11 <TextView android:textSize="15sp" android:textColor="@color/colorTint" a
12 </LinearlLayout>
13 </LinearlLayout>
14 </Linearlayout>
15

Finding 2

https://github.com/bumptech/glide

<?xml version="1.0" encoding="utf-8"7>

2 | <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orit
3 <Relativelayout android:orientation="vertical" android:background="@drawable/myp:
4 <View android:background="@drawable/myps slider indicator" android:layout wit
5 <TextView android:textSize="17sp" android:textColor="@color/colorTint" andro
6 </Relativelayout>
7 <include android:id="@+id/divider" layout="@layout/fTragment border"/>
8 <LinearLayout android:orientation="vertical" android:background="@color/colorSli«
|9 <EditText android:textSize="14sp" android:textColor="@color/colorTint" andro
10 <LinearlLayout android:gravity="center" android:orientation="horizontal" andr(
11 <TextView android:textSize="15sp" android:textColor="@color/colorTint" a
12 </LinearlLayout>
13 </LinearlLayout>
14 </LinearLayout>
15

We would like to clarify:
1. License Keys vs. Sensitive User Data
+ The field in myps_activity activate_slider.xml is for entering a license key , not a
password, PIN, or personally identifiable information (PII).
* It does not grant access to personal user data or user accounts, so it is not considered
confidential in the same sense as passwords or PINs.
2. No Exposure of Confidential Information

+ We do not display any user credentials, session tokens, or other data that could
compromise user security.

+ The EditText is solely for product activation, and its content reveals no sensitive user
details.

3. Compliance with MSTG-STORAGE-7
* As the license key is not classified as sensitive user data (like a password or PIN),
displaying it in the Ul does not violate MSTG-STORAGE-7.
* No other Ul components expose private or sensitive data.

Scan Verified

In this section you can find all the results based on the automatic evaluation, for the test cases
in PASS it can be seen as informative, for the results marked as Fail you need to fix the issues
or provide some feedback or justification in the respective area.

FAIL

PASS

MSTG-STORAGE-5

The keyboard cache is disabled on text inputs that process sensitive data.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-1

The app does not rely on symmetric cryptography with hardcoded keys as a sole

method of encryption.

Finding 1

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

Soo-wousw

ot ot ot o o
- O LN B) R

-t

L L) L Ll W R R R B R B R B B B e
EWNPEPE SO UEWRN P S oo

w
wn

public

EO.t;

G3.a;

H3.a;

J3.c;

N3.d;

N3.h;

N3.1i;

android.content.Context;
android.os.ParcelFileDescriptor;
com.protectstar.antispy.DeviceStatus;
java.io.File;
java.io.FileInputStream;
java.lilo.FileOutputStream;
java.io.I0Exception;
java.nio.ByteBuffer;
java.nio.channels.FileChannel;
java.security.SecureRandom;
java.util.ArraylList;
java.util.Arrays;

java.util .HashMap;
java.util.HashSet;
java.util.Iterator;
java.util.LinkedHashSet;
java.util.Objects;
java.util.UUID;
javax.crypto.Cipher;
javax.crypto.CipherInputStream;
javax.crypto.CipherQutputStream;
javax.crypto.spec.IvParameterSpec;
javax.crypto.spec.SecretKeySpec;
k3.InterfaceC0612b;

/* loaded from: classes.dex */

final class b {

Finding 2

package N3;

import J3.c;

import T3.m;

import android.os.Build;

£ import java.io.BufferedInputStream;

7 | import java.io.File;

8 | import java.io.FilelnputStream;

9 | import java.io.FileNotFoundException;
10 | import java.io.IOException;

11 import java.security.MessageDigest;
12 import java.security.NoSuchAlgorithmException;
13 import java.util.ArraylList;

14 import java.util.HashMap;

15 import java.util.HashSet;

16 import java.util.Iterator;

17 import java.util.LinkedHashMap;

18 import java.util.Map;

19 import java.util.Objects;

20 import java.util.Set;

21 /* loaded from: classes.dex */

22 public final class h {

23

24 /* renamed from: a reason: collision with root package name */

25 public static final char[] f2244a = "0123456789abcdef".toCharArray();

26

27 /* JADX WARN: Type inference failed for: rOv4, types: [java.lang.Object, N3.g]
28 public static void a(HashMap<String, HashSet<e>> hashMap, String str, e eVar) {
29 Object computeIfAbsent;

30 if (str !'= null && !str.isEmpty()) {

31 if (Build.VERSION.SDK INT >= 24) {

32 computeIfAbsent = hashMap.computeIfAbsent(str, new Object());

22 fiHacrhCa+l ramnutaTFAheantl addlallarl .

We would like to clarify the following:

1.

java_source/H3/b.java (AES-256 Key & IV for Quarantine)

« The hardcoded AES key and IV in this file are not used to protect sensitive user data.
Instead, we use them to encrypt malicious or suspicious files when quarantining,
rendering those files temporarily unusable.

* This mechanism prevents the file from being directly executed or accessed while in
quarantine. The key is merely a technical measure to neutralize the threat, but it is not
intended for protecting personally identifiable information (PII).

No Sole Reliance on Hardcoded Keys

* Because these files are malicious, the encryption key does not secure user-owned data
and does not expose any user credentials, secrets, or personal data.

» If the user chooses to restore the quarantined file, the same key allows reversion. This
process does not grant access to confidential user information, as none is stored this
way.

java_source/N3/h.java (Helper Methods & SecureRandom)

* The methods flagged here deal with securely overwriting files using either random
data from SecureRandom or a fixed pattern (e.g., OxFF).

+ These methods are employed for secure deletion workflows, not for encrypting sensitive
user data with a hardcoded key.

Compliance with MSTG-CRYPTO-1

* We confirm that our app does not rely on a hardcoded symmetric key for protecting user
data.

* The hardcoded key you identified is simply part of our quarantine functionality, ensuring
malicious files are rendered inert. All actual user credentials or personal data, if any,
would be secured through proper cryptographic measures (e.g., using
SecureRandom or other recommended approaches).

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-2

The app uses proven implementations of cryptographic primitives.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-3

The app uses cryptographic primitives that are appropriate for the particular use-case,
configured with parameters that adhere to industry best practices.

Finding 1

111 private HashSet<a.CB012a> f1229p = new HashSet<>();

112

113 /* loaded from: classes.dex */

114 public enum a {

115 SUCCESS,

116 GENERAL,

117 MISSING ROOT,

118 WRITE

119 }

20

121 public b(File file) {

122 this.f1215a = file.getName();

123 this.fT1217c = file.getAbsolutePath(};

24 }

125

126 public static void h(FileInputStream fileInputStream, FileOutputStream fileOutp
|127 Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
128 cipher.init(2, new SecretKeySpec(fl214t, "AES"), new IvParameterSpec(fl213s
129 CipherInputStream cipherInputStream = new CipherInputStream(fileInputStream
130 try {

131 byte[] bArr = new byte[8192];

132 while (true) {

133 int read = cipherInputStream.read(bArr)

134 if (read '= -1) {

135 fileOutputStream.write(bArr, 0, read);

136 } else {

137 fileOutputStream.flush();

138 cipherInputStream.close();

139 return;

140 }

141 }

142 } catch (Throwable th) {

143 try {

Finding 2

168 int ceil = (int) Math.ceil(length / min);

169 for (int i7 = 0; i7 < ceil; i7++) {
170 if (i7 = 0 && 17 == ceil - 1) {
171 i6 = (int) (length - (min * i7));
172 } else {
173 i6 = min;
174 +
175 byte[] bArr = new byte[i6];
176 randomAccessFile.seek(min * i7);
177 int i8 = 0;
178 while (i8 < i6) {
179 i8 += randomAccessFile.read(bArr, i8, i6 - 1i8);
180 +
181 if (i8 == i6) {
182 FileOutputStream fileOutputStream = (FileOutputStream) tVar.f73
183 try {
|184 Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
185 cipher.init(2, new SecretKeySpec(H3.b.T1214t, "AES"), new I
186 fileOutputStream.write(cipher.doFinal (bArr));
187 } catch (Exception e6) {
88 eb.printStackTrace();
189 }
190 } else {
191 throw new IOException("Unexpected read size. current: " + i8 +
192 +
193
194 randomAccessFile.close();
195 } catch (FileNotFoundException unused) {
196 } catch (Throwable th) {
197 th.printStackTrace();
198 }
199 }
200 }

We would like to clarify the following:

1.

java_source/H3/b.java (Encrypt/Decrypt for Quarantine)

* These methods encrypt and decrypt malicious files when moving them into or out of
our quarantine.

+ Since the quarantined files are not user-sensitive (e.g., not personal documents or
credentials), this encryption primarily renders malicious content unusable until (and
unless) it is intentionally restored.

* We do use a modern cryptographic algorithm (AES-256) to perform byte-level
modifications. This choice ensures that once encrypted, the file is effectively neutralized
in storage.

No User-Sensitive Data

+ The quarantine mechanism is designed for potentially harmful files, rather than for
protecting user secrets or personal data.

* As aresult, while we apply AES-based encryption, it is not being used for user
credential encryption or similarly sensitive user information.

java_source/N3/d.java (File Handling Helpers)

+ This file primarily contains generic file 1/O operations (copying files, writing/reading
bytes, etc.).

* It does not introduce additional cryptographic functionality that would affect sensitive
user data or store cryptographic keys.

Industry Best Practices

+ We follow recommended guidelines for the cryptographic primitives in use, leveraging
AES-256 from standard libraries, and avoiding outdated or insecure algorithms.

* Our code does not rely on deprecated modes such as ECB, and we remain mindful of
using strong ciphers even though the data here is not user-sensitive.
In conclusion, our app’s cryptographic usage aligns with MSTG-CRYPTO-3 for its specific
purpose (quarantine encryption), and no sensitive user data is exposed or at risk.
After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-4

The app does not use cryptographic protocols or algorithms that are widely considered
deprecated for security purposes.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CRYPTO-6

All random values are generated using a sufficiently secure random number generator.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-1

Data is encrypted on the network using TLS. The secure channel is used consistently
throughout the app.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-2

The TLS settings are in line with current best practices, or as close as possible if the
mobile operating system does not support the recommended standards.

After further analysis the application seems to comply successfully with the requirement.

MSTG-NETWORK-3

The app verifies the X.509 certificate of the remote endpoint when the secure channel is
established.

After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-1

The app only requests the minimum set of permissions necessary.

After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-2

All inputs from external sources and the user are validated and if necessary sanitized.
This includes data received via the Ul, IPC mechanisms such as intents, custom URLSs,
and network sources.

Finding 1
2 this.f7681 = j6;
2/ }
25
26 @0verride // Fl.1.a
27 public Object apply(Object obj) {
28 SQLiteDatabase s(LiteDatabase = (SQLiteDatabase) obj;
29 c.a aVar = (c.a) this.f770k;
30 String num = Integer.toString(aVar.getNumber());
31 String str = (String) this.f769j;
32 boolean booleanValue = ((Boolean) Fl1.l1.B(sQLiteDatabase.rawQuery("SELECT 1 F
33 long j& = this.f7681;
34 if (!'booleanValue) {
35 ContentValues contentValues = new ContentValues();
36 contentValues.put("log source”, str);
7 contentValues.put("reason", Integer.valueOf({aVar.getNumber()));
38 contentValues.put("events dropped count", Long.valueOf(j6)};
39 sQLiteDatabase.insert("log event dropped", null, contentValues);
40 } else {
J41 sQLiteDatabase.execSQL("UPDATE log event dropped SET events dropped coun
42 1
43 return null;
44 }
45
46 @0verride // Gl.b.a
47 public Object b() {
48 o oVar = (o) this.f769j;
49 oVar.f773c.D(oVar.f777g.b() + this.f7681i, (yl.j) this.f770k);
50 return null;
51 }
52|}
53

Finding 2

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

|140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Finding 3

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

[456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

}

String str = jVar2.f12605a;

if (sQLiteDatabase.update("transport contexts", contentValues, "bac
contentValues.put("backend name", str);
contentValues.put("priority”, Integer.valueOf(Il.a.a(eVar)));
sQLiteDatabase.insert("transport _contexts", null, contentValues

return null;
}
b

@override // Fl.d
public final void H(Iterable<h> iterable) {

}

if (!iterable.iterator().hashNext()) {
return;
}

String str = "UPDATE events SET num attempts = num attempts + 1 WHERE _id i
SQLiteDatabase kb = k();
k6.beginTransaction();
try {
k6.compileStatement(str).execute();
Cursor rawQuery = k6.rawQuery("SELECT COUNT(*), transport name FROM eve
while (rawQuery.moveToNext()) {
g(rawQuery.getInt(@), c.a.MAX RETRIES REACHED, rawQuery.getString(l
}

rawQuery.close();
k6.compileStatement("DELETE FROM events WHERE num_attempts == 16").exec
k6.setTransactionSuccessful();
} finally {
k6.endTransaction();
}

} else {
hVar.add(str);

}

C0726h.b(hVar);

Object[] array = hVar.toArray(new String[@]);

Ad.i.d(array, "null cannot be cast to non-null type kotlin.Array<T of kotli
return (String[]) array;

public final void d(InterfaceC®757b interfaceC8757b, int i6) {

}

String str;

interfaceC8757b.s("INSERT OR IGNORE INTO room table modification log VALUES

String str2 = this.f10509e[i6];

String[] strArr = T105040;

for (int i7 = @; i7 < 3; i7++) {
String str3 = "CREATE TEMP TRIGGER IF NOT EXISTS " + a.a(str2, str) + "
Ad.i.e(str3, "StringBuilder().apply(builderAction).toString()");
interfaceC0757b.s(str3);

public final void e(InterfaceC®757b interfaceC0757b) {

Ad.i.f(interfaceC0757b, "database”);
if (interfaceC®757b.Y()) {

return;
}

try {
ReentrantReadWritelLock.ReadlLock readlLock

A4.i.e(readLock, "readWritelock.readlLock()
readlLock.lock();

try {
synchronized (this.f105151) {

this.f10505a.f105361. readLoc
")

!

We would like to clarify the following:

1. Google-Provided Library Code
The files you referenced (E1/n.java, F1/l.java, m0/C0644i.java) appear to be from a Google-
provided, open-source library. We have not modified or customized these library files.

2. Input Validation in Our Application
Although these classes belong to a standard library, our own code ensures that any user-
supplied or external data is validated and sanitized before being passed to these library
methods. We do not allow untrusted or potentially malicious inputs to reach sensitive
routines.

3. Adherence to MSTG-PLATFORM-2
We take a defensive approach , validating all incoming data—whether from Ul inputs,
intents, URLs, or network sources—to mitigate the risk of injection attacks or security
breaches. Our integration of Google’s library does not bypass any of these safeguards.

4. Regular Updates and Security Monitoring
We keep our dependencies (including Google libraries) up to date, ensuring we benefit from
the latest security patches and adhere to current best practices.

After further analysis, we confirm that our application fully complies with MSTG-PLATFORM-2.

After further analysis the application seems to comply successfully with the requirement.

MSTG-PLATFORM-3

The app does not export sensitive functionality via custom URL schemes, unless these
mechanisms are properly protected.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-1

The app is signed and provisioned with a valid certificate, of which the private key is
properly protected.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-2

The app has been built in release mode, with settings appropriate for a release build
(e.g. non-debuggable).

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-3

Debugging symbols have been removed from native binaries.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-4

Debugging code and developer assistance code (e.g. test code, backdoors, hidden
settings) have been removed. The app does not log verbose errors or debugging
messages.

Finding 1
12 public final /* synthetic */ class e implements Y2.a {
13
14 /* renamed from: a reason: collision with root package name */
15 public final /* synthetic */ int f2188a;
16
17 public /* synthetic */ e(int i6) {
18 this.f2188a = i6;
19 }
20
21 @override // Y2.a
22 public final Object get() {
23 switch (this.f2188a) {
24 case ReviewErrorCode.NO ERROR /* 0 */:
25 return Collections.emptySet();
26 case 1:
27 o<ScheduledExecutorService> oVar = ExecutorsRegistrar.f7967a;
|28 StrictMode.ThreadPolicy.Builder detectNetwork = new StrictMode.Threa
29 int i6 = Build.VERSION.SDK INT;
30 if (i6 == 23) {
31 detectNetwork.detectResourceMismatches();
32 if (i6 == 26) {
33 detectNetwork.detectUnbufferedIo();
34 }
35 1
|36 return new 02.h(Executors.newFixedThreadPool(4, new 02.a("Firebase B
37 case 2:
38 o<ScheduledExecutorService> oVar2 = ExecutorsRegistrar.f7967a;
39 return Executors.newSingleThreadScheduledExecutor(new 02.a("Firebase
40 default:
41 com.google.firebase.messaging.a aVar = FirebaseMessaging.t7976m;
42 return null;
43 }
44 }

Finding 2

1 | package 02;

2

3 | import N2.o;

4 | import android.os.StrictMode;

5 import com.google.firebase.concurrent.ExecutorsRegistrar;

6 | import java.util.concurrent.Executors;

7 | import java.util.concurrent.ScheduledExecutorService;

8 /* loaded from: classes.dex */

9 | public final /* synthetic */ class k implements Y2.a {

16 @0verride // Y2.a

11 public final Object get() {

12 0<ScheduledExecutorService> oVar = ExecutorsRegistrar.f7967a;
|13 return new h(Executors.newFixedThreadPool(Math.max(2, Runtime.getRuntime().a
14 }

15| }

16

Finding 3

66

67 /* renamed from: bl.aba reason: collision with other inner class name */
68 /* loaded from: classes.dex */

69 public class RunnableC0083a implements Runnable {

70

71 /* renamed from: i reason: collision with root package name */

72 public final /* synthetic */ Runnable f6249i;

73

74 public RunnableC8083a(Runnable runnable) {

75 this.f6249i = runnable;

76 }

77

78 @0verride // java.lang.Runnable

79 public final void run() {

80 b bVar = b.this;

81 if (bVar.f6247d) {
| 82 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder(
83 }

84 try {

85 this.f6249i.run();

86 } catch (Throwable th) {

87 bVar.f6246¢c.getClass();

88 if (Log.islLoggable("GlideExecutor", 6)) {

89 Log.e("GlideExecutor”, "Request threw uncaught throwable"”,
20 1

01 }

02 }

93 }

04

95 public b{ThreadFactoryC008la threadFactoryC008la, String str, boolean z5) {
06 c.C0084a cBOB4a = c.f6251a;

97 this.f6248e = new AtomicInteger();

98 this.f6244a = threadFactoryCoB8la;

We would like to clarify the following:

1. Referenced Library (Glide)
The files you have noted (N2/e.java, O2/k.java, b1/ExecutorServiceC0365a.java) appear to
stem from the open-source Glide library. Glide is utilized for efficient image loading and
caching, ensuring smooth scrolling and optimized performance.

2. StrictMode Policy Check (No Debug Backdoor)
Portions of the flagged code involve StrictMode , which is used to detect inadvertent
network calls on the main (Ul) thread. This is a standard best practice to prevent
performance bottlenecks (ANRs), not a debugging or backdoor mechanism. We do not
introduce or ship verbose logs, hidden test code, or developer assistance backdoors in our
production build.

3. No Verbose Logging or Debugging Routines
We confirm that we do not log sensitive information or carry additional debugging
instructions in our release version. The portions of Glide included in our app do not emit
sensitive data; they simply support stable performance and efficient caching.

After reviewing these details, we confirm that our application does not contain any debug code,

backdoors, or hidden settings. We therefore comply with MSTG-CODE-4. If you require further

information, please let us know.

After further analysis the application seems to comply successfully with the requirement.

MSTG-CODE-9

Free security features offered by the toolchain, such as byte-code minification, stack
protection, PIE support and automatic reference counting, are activated.

After further analysis the application seems to comply successfully with the requirement.

https://github.com/bumptech/glide

	Summary of the application
	Nomenclature
	Verification Type
	Summary Table

	Self-Declare
	MSTG-STORAGE-1
	MSTG-STORAGE-2
	MSTG-STORAGE-12
	MSTG-CRYPTO-5
	MSTG-AUTH-1
	MSTG-AUTH-2
	MSTG-AUTH-3
	MSTG-AUTH-4
	MSTG-AUTH-5
	MSTG-AUTH-6
	MSTG-AUTH-7
	MSTG-PLATFORM-4
	MSTG-CODE-5

	NMI
	MSTG-STORAGE-3
	MSTG-STORAGE-7

	Scan Verified
	FAIL
	PASS
	MSTG-STORAGE-5
	MSTG-CRYPTO-1
	MSTG-CRYPTO-2
	MSTG-CRYPTO-3
	MSTG-CRYPTO-4
	MSTG-CRYPTO-6
	MSTG-NETWORK-1
	MSTG-NETWORK-2
	MSTG-NETWORK-3
	MSTG-PLATFORM-1
	MSTG-PLATFORM-2
	MSTG-PLATFORM-3
	MSTG-CODE-1
	MSTG-CODE-2
	MSTG-CODE-3
	MSTG-CODE-4
	MSTG-CODE-9

